If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-1=3
We move all terms to the left:
p^2-1-(3)=0
We add all the numbers together, and all the variables
p^2-4=0
a = 1; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·1·(-4)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*1}=\frac{-4}{2} =-2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*1}=\frac{4}{2} =2 $
| 3y(5y−1)=0 | | 6x=3(x-4)-x | | 7b+1=43 | | 4x+6/6=2x-5/5 | | 4(x)+5=2x-6 | | 8x-3(2x+5)=2(3X5)+3 | | 70x+16=9 | | X+0.0825x=58634 | | 10+x-3=-4(x+2) | | -4(x+5)-2=-18 | | -8/x+7/9=0 | | 5+x=10-x | | 8^3x-5=17^5x+19 | | 5p=24 | | x+4+x-14=90 | | X-21=2(-x-6) | | 12b=-12b+5b | | 2(r-3)+6=4 | | 6n-4+8n=-18 | | 0=4.61x^2+43.4x-5451 | | 2x+3(2x-3)=15 | | -3x-x=4x | | 6x-(2x+5)=2+(3x+5) | | 6x-(2x+5)=2+(3x+)5 | | 6x-(2x+5)=2+(3x+5 | | -30=5(w+1) | | 3x-4-x=2(-x+8) | | j/10=-9 | | 2b^2-4b-139=-6b+5 | | -3(-6+3v)=81 | | -5(5+6b)-8b=127 | | 3x^2=-9x^2-12x+22 |